
Docker
And the
Docker
Engine

Containers

wired.comMichael DeFrancesco

https://media.wired.com/photos/590965e876f462691f012f63/2:1/w_2500,c_limit/docker-wallpaper-black.jpg

What is Docker?
What is a Container?
It is an isolation of a processe’s view of its operating environment. This is done through Linux namespaces.
Examples of resource names that can exist in multiple spaces, so that the named resources are partitioned, are process IDs,
hostnames, user IDs, file names, and some names associated with network access, and interprocess communication.

And Docker?
Docker is an application-centric container runtime. It is ephemeral by nature and facilitates rapid deployment of services.

Docker grew in popularity by leveraging LXC to enable containers, or images, to share and run off of the host operating system’s
kernel. As a result Docker images are extremely lightweight and run inside of their own ‘pid namespace’ on the host.
The leveraging of AuFS enables guest data to be accessed from the host without NAT’ing or bridging the Virtual system.

Because Docker Containers are so lightweight a host can easily scale from 100 to 1000’s of virtual operating systems without a
significant slow down.

https://en.wikipedia.org/wiki/Interprocess_communication

Docker runs on top of the LXC api. LXC leverages Linux native PID namespaces and cgroups to be able to virtualize just
the application environment.
This means that applications can run off of host container by sharing it’s kernel and core processes. This dramatically
reduces the hardware resources necessary to run an application or a service.

Filesystem
Docker implements a Union Filesystem in order to support a container’s filesystem.
https://blog.docker.com/2015/10/docker-basics-webinar-qa/

Storage
Docker Volumes enables containers to store persistent data outside of the container itself. This helps maintain the Docker
Philosophy of ‘single purpose ephemeral containers’ while still satisfying the need Database and File System needs to
facilitate web servers.

Implementation of Docker

https://devopscube.com/what-is-docker/
https://www.infoworld.com/article/3204171/linux/what-is-docker-linux-containers-explained.html
https://blog.docker.com/2015/10/docker-basics-webinar-qa/

PID Namespaces?
A new PID namespace is created by calling clone() with the

CLONE_NEWPID flag.

Unlike fork(2), clone() allows the child process to share parts
of its execution context with the calling process, such as the
virtual address space, the table of file descriptors, and the
table of signal Handlers. [Linux Manpage]

clone() allows the child and parent process to share memory,
however, the child process cannot execute in the same stack as the
parent process. The parent process must set up memory space for
the child stack inside of its execution stack and pass a pointer to this
space to clone() using the child_stack argument

http://man7.org/linux/man-pages/man2/clone.2.html
http://man7.org/linux/man-pages/man2/fork.2.html
http://man7.org/linux/man-pages/man2/clone.2.html

The null pointer to child_stack is created

Clone() is called and passed the function to execute and the pointer to
memory location the function will occupy.

Life Before Docker
Before Docker, data centers used complex hypervisors such as ESXi, Xen, or Hyper-V in order to leverage virtualized
resources.
Hypervisors introduced another layer of complexity by virtualizing hardware and drivers to support a guest kernel. If
someone wanted to run a service inside of a virtual machine they would need sufficient hardware resources to run an
abstraction layer, an entire operating system, its processes, and finally the service you intended to run.

Hypervisors as a result are not very memory efficient.

https://blog.docker.com/2016/04/containers-and-vms-together/

Advantages of Docker
Docker uses containers, which emulate only the environment needed to support
applications and services.

Container hosted applications run on host machine by sharing it’s kernel and core
processes. This dramatically reduces the hardware resources necessary to
support an application or a service.

A host that was only capable of running a few 100 VM’s can now host 1000’s of
Docker Containers.

Docker Machine
Docker took the SaaS market by storm as it enabled sysadmins and devops engineers very rapidly scale up their
infrastructures and maintain a consistent development environment across several different platforms. In order to satisfy
demand for Windows and MacOS users Docker Machine was created.

Implementation
Docker Machine functions differently than Native Docker on Linux. Docker Machine provides a set of cli tools to boot a
virtual Alpine Linux image inside of a standard tier-2 hypervisor. The Docker Machine tools could then be used to execute
Docker commands inside the VM from the host machines shell.

Reduced Performance
Docker Machine satisfied the need for portability to the Proprietary platforms however these users suffered from a
performance disadvantage and a more complex implementation than the Linux Native Docker runtime.

As a result the Docker team sought out to develop Windows and Mac specific implementations of the Docker runtime in
order to get more performance out of each of these platforms.

https://docs.docker.com/machine/overview/#what-is-docker-machine
https://docs.docker.com/machine/overview/#what-is-docker-machine

Implementation of Docker: Windows
Storage
The Union File system is emulated when
using Docker for Windows and instead uses
virtual NTFS pools with several symlinks to
the Windows host’s system paths

Implementation
Because Docker is built so tightly around Linux
native technologies Docker for Windows is
currently functioning by running an Alpine Linux
VM inside of Hyper-V. Support is planned to
directly use Hyper-V containers in the future.

http://blog.xebia.com/deep-dive-into-windows-server-containers-and-docker-part-2-underlying-implementation-of-windows-server-containers/
http://blog.xebia.com/deep-dive-into-windows-server-containers-and-docker-part-2-underlying-implementation-of-windows-server-containers/

Implementation of Docker: MacOS
Implementation
The MacOS implementation of Docker is very similar to the Windows Docker implementation. MacOS also relies on an
Alpine Linux VM as a shim for the Docker Daemon.
However, MacOS uses the xhyve hypervisor to support the Alpine image. Xhyve has the advantage of letting the Alpine
image talk directly to the Darwin kernel using hypervisor.Framework api calls. This nets a slight performance advantage to
MacOS but does not achieve the performance of Linux native containers.

Storage
In order to support storage Docker for Mac utilizes osxfs shared volumes to facilitate filesystem writes
from the container. This implementation offers very little I/O throughput (250MB/s 130μs latency) and is
usually bundled with a filesystem cache.

https://github.com/mist64/xhyve
https://developer.apple.com/documentation/hypervisor
https://docs.docker.com/docker-for-mac/osxfs/
https://docs.docker.com/docker-for-mac/osxfs/#performance-issues-solutions-and-roadmap

Docker Networking

When the Docker daemon initializes a
new container it is assigned a network
address and connected to a virtual
Ethernet bridge (docker0).

All containers communicate with each
other through the docker0 bridge which
automatically forwards IP packets
through the docker subnet.

This is similar to how Distributed
Computing networks are constructed.

Docker Compose
Docker Compose was created in order to facilitate
complex environments and network infrastructures.
These environments require persistent services and
data.

With Docker compose you can spin up multiple
containers, bridges, and storage volumes using yaml
directives. IP’s, hostnames, container names and
environment variables can all be declared with
Docker compose. When a new container is spun up it
will automatically migrate the Volumes from its
predecessors.

Docker compose is also very useful for DevOps as
entire development environments can be effortlessly
migrated from Testing to QA, to Production.

Docker Swarm
Docker facilitates inter-container networking by functioning as a virtual subnet. This means that Docker is also a Software Defined
Network. More Info
Abstracting Hardware Networking away from Docker enables container networks to be easily migrated between or to span between
multiple platforms. This also opens up new possibilities such as Docker Swarm.

What is Docker Swarm?
Docker Swarm is a platform that allows Docker to be used in cluster computing environments. Docker Swarm is decentralized and lets
containers float across multiple hosts. Docker Swarm based off of the low level Docker Orchestration features implemented in Docker
Compose.

Why Not Just Use Compose?
Docker Swarm lets users modify container configuration, volumes and exposed ports without restarting the containers. This capability
is imperative for clustered networks where there needs to be a consistent uptime. Additionally, Docker Swarm managers are the only
processes that can modify the Swarm and its components. Standard Docker processes can participate but cannot modify the Swarm.
This extra layer of isolation provides a security advantage in environments where users can spin up containers without being a threat to
the overall system (such as when a user rents a VPS from a hosting company). More Info

https://www.sdxcentral.com/cloud/containers/definitions/how-does-container-networking-work/
https://docs.docker.com/engine/swarm/key-concepts/

Using Docker:
Docker Run
By default, Docker pulls from the
DockerHub registry. This means if
you attempt to use a container
image that does not exist locally
Docker will download it from
DockerHub onto your machine.

Docker uses a very structured
command line syntax

Docker Exec
Docker exec runs arbitrary
commands from within the
container. This enables scripting of
containers from the host and
maintenance of the containers from
the host.

Src: defrances.co/post/nextcloudpt2/

Where does Docker fall short?
Docker satisfies a lot of niche needs in the industry. It makes the Software Development Lifecycle dramatically easier. Docker makes
services portable across multiple platforms so it is no surprise that it has been extremely well received.

Steep Learning Curve
Not only does Docker itself have a lot of depth, and thus, a decent learning curve but it requires a deep understanding of the Linux/Unix
architecture in order to be self sufficient working with Docker Hosts.

Performance hits on Proprietary Platforms
Linux has and still is the premiere platform for the Docker Engine. Because Docker relies on Linux at such a low level users on MacOs
or Windows platforms will not get the same raw performance as Linux users. Docker as a service is more suited for Linux hosts, where
as development testing environments should be fine on the ported platforms.

You are Stuck With the Host’s Kernel
Because the Docker Engine itself, and the containers it runs, all exist as their own processes users are stuck with the Host’s
containers. Therefore, User’s cannot expect Docker to completely replace standard Hypervisors. Docker is not and will never be the
answer to gaming on Linux.

https://www.wired.com/2015/04/docker-raises-95m-silicon-valley-loves-containers/
https://www.kernel.org/doc/Documentation/vfio.txt
https://github.com/gnif/LookingGlass

Conclusion
Docker has revolutionized the server and
DevOps industry with its surging popularity
and portability.

When LXC was created it was viewed as a
promising API. At first it only seemed like it
would serve as an extension of hypervisors.

However, Docker is responsible for proving
Linux Containers can be used for rapid
deployments and leveraged Linux’s little
known but unique advantages to truly
revolutionize the SaaS industry.

https://www.wired.com/2015/04/docker-raises-95m-silicon-valley-loves-containers/

